iForest - Biogeosciences and Forestry (Aug 2015)
Genetic variation and heritability estimates of Ulmus minor and Ulmus pumila hybrids for budburst, growth and tolerance to Ophiostoma novo-ulmi
Abstract
Seedlings obtained by crossing Ulmus minor and U. minor × U. pumila clones were assessed for flowering, bark beetle damage, vegetative budburst, height growth and resistance to Ophiostoma novo-ulmi. Ramets and open pollinated seedlings obtained from the parent trees were assessed for the same traits. Most progenies had similar traits to their parents, but some presented heterosis in annual growth or resistance to O. novo-ulmi. Leaf wilting was significantly lower in progenies with U. minor × U. pumila rather than U. minor as female parent (21.5 and 30.6%, respectively; P<0.05). Resistance to O. novo-ulmi increased significantly as a function of increased amounts of U. pumila germplasm from the female parent, suggesting that resistance to Dutch elm disease is primarily transmitted from the mother. Budburst occurred earlier in seedlings with low rather than high growth rates (P=0.0007) and percentage of wilting was negatively related to early budburst (P<0.0001). Other phenotypic relations included percentage of flowering trees and annual height growth (rp=0.44; P=0.0042), percentage of flowering trees and vegetative budburst (rp=-0.53; P=0.0004) and percentage of beetle-affected trees and annual height growth (rp=0.60; P<0.0001). Heritability estimates obtained from the regression and variance components methods ranged from 0.06 ± 0.04 to 0.64 ± 0.18, 0.10 ± 0.05 to 0.69 ± 0.17, and 0.13 ± 0.32 to 0.71 ± 0.22 for budburst, growth and tolerance to O. novo-ulmi, respectively. Broad- and narrow-sense heritability values were higher when estimated 60 days post inoculation (dpi) than 15, 30 or 120 dpi. Heritability estimates and genetic gains reported indicate a high degree of additive genetic control and show the effectiveness of selection for Dutch elm disease resistance and rapid tree growth.
Keywords