Microbiology Spectrum (Jun 2023)

Comprehensive Assessment of 16S rRNA Gene Amplicon Sequencing for Microbiome Profiling across Multiple Habitats

  • Wenke Zhang,
  • Xiaoqian Fan,
  • Haobo Shi,
  • Jian Li,
  • Mingqian Zhang,
  • Jin Zhao,
  • Xiaoquan Su

DOI
https://doi.org/10.1128/spectrum.00563-23
Journal volume & issue
Vol. 11, no. 3

Abstract

Read online

ABSTRACT The 16S rRNA gene works as a rapid and effective marker for the identification of microorganisms in complex communities; hence, a huge number of microbiomes have been surveyed by 16S amplicon-based sequencing. The resolution of the 16S rRNA gene is always considered only at the genus level; however, it has not been verified on a wide range of microbes yet. To fully explore the ability and potential of the 16S rRNA gene in microbial profiling, here, we propose Qscore, a comprehensive method to evaluate the performance of amplicons by integrating the amplification rate, multitier taxonomic annotation, sequence type, and length. Our in silico assessment by a “global view” of 35,889 microbe species across multiple reference databases summarizes the optimal sequencing strategy for 16S short reads. On the other hand, since microbes are unevenly distributed according to their habitats, we also provide the recommended configuration for 16 typical ecosystems based on the Qscores of 157,390 microbiomes in the Microbiome Search Engine (MSE). Detailed data simulation further proves that the 16S amplicons produced with Qscore-suggested parameters exhibit high precision in microbiome profiling, which is close to that of shotgun metagenomes under CAMI metrics. Therefore, by reconsidering the precision of 16S-based microbiome profiling, our work not only enables the high-quality reusability of massive sequence legacy that has already been produced but is also significant for guiding microbiome studies in the future. We have implemented the Qscore as an online service at http://qscore.single-cell.cn to parse the recommended sequencing strategy for specific habitats or expected microbial structures. IMPORTANCE 16S rRNA has long been used as a biomarker to identify distinct microbes from complex communities. However, due to the influence of the amplification region, sequencing type, sequence processing, and reference database, the accuracy of 16S rRNA has not been fully verified on a global range. More importantly, the microbial composition of different habitats varies greatly, and it is necessary to adopt different strategies according to the corresponding target microbes to achieve optimal analytical performance. Here, we developed Qscore, which evaluates the comprehensive performance of 16S amplicons from multiple perspectives, thus providing the best sequencing strategies for common ecological environments by using big data.

Keywords