BMC Plant Biology (Oct 2023)

Transcriptomic analysis implicates ABA signaling and carbon supply in the differential outgrowth of petunia axillary buds

  • Zhiwei Luo,
  • Dan Jones,
  • Sarah Philp-Wright,
  • Joanna Putterill,
  • Kimberley Cathryn Snowden

DOI
https://doi.org/10.1186/s12870-023-04505-3
Journal volume & issue
Vol. 23, no. 1
pp. 1 – 17

Abstract

Read online

Abstract Background Shoot branching of flowering plants exhibits phenotypic plasticity and variability. This plasticity is determined by the activity of axillary meristems, which in turn is influenced by endogenous and exogenous cues such as nutrients and light. In many species, not all buds on the main shoot develop into branches despite favorable growing conditions. In petunia, basal axillary buds (buds 1–3) typically do not grow out to form branches, while more apical axillary buds (buds 6 and 7) are competent to grow. Results The genetic regulation of buds was explored using transcriptome analyses of petunia axillary buds at different positions on the main stem. To suppress or promote bud outgrowth, we grew the plants in media with differing phosphate (P) levels. Using RNA-seq, we found many (> 5000) differentially expressed genes between bud 6 or 7, and bud 2. In addition, more genes were differentially expressed when we transferred the plants from low P to high P medium, compared with shifting from high P to low P medium. Buds 6 and 7 had increased transcript abundance of cytokinin and auxin-related genes, whereas the basal non-growing buds (bud 2 and to a lesser extent bud 3) had higher expression of strigolactone, abscisic acid, and dormancy-related genes, suggesting the outgrowth of these basal buds was actively suppressed. Consistent with this, the expression of ABA associated genes decreased significantly in apical buds after stimulating growth by switching the medium from low P to high P. Furthermore, comparisons between our data and transcriptome data from other species suggest that the suppression of outgrowth of bud 2 was correlated with a limited supply of carbon to these axillary buds. Candidate genes that might repress bud outgrowth were identified by co-expression analysis. Conclusions Plants need to balance growth of axillary buds into branches to fit with available resources while allowing some buds to remain dormant to grow after the loss of plant parts or in response to a change in environmental conditions. Here we demonstrate that different buds on the same plant with different developmental potentials have quite different transcriptome profiles.

Keywords