Heliyon (Jun 2024)
Evaluation of resistance patterns and bioremoval efficiency of hydrocarbons and heavy metals by the mycobiome of petroleum refining wastewater in Jazan with assessment of molecular typing and cytotoxicity of Scedosporium apiospermum JAZ-20
Abstract
Jazan Industrial Economic City (JIEC) is located on the Red Sea coast in the province of Jazan, southwest of Saudi Arabia anchors diverse heavy and secondary industries in the energy, water desalination, petroleum, aluminum, copper, refineries, pharmaceuticals and food manufacturing fields. These various industries generate a large quantity of industrial wastewaters containing various toxicants. The present work represents ecologically beneficial alternatives for the advancement of environmental biotechnology, which could help mitigate the adverse impacts of environmental pollution resulting from petroleum refining effluents. The mycobiome (32 fungal strains) isolated from the industrial wastewater of the refinery sector in Jazan were belonged to five fungal genera including Fusarium, Verticillium, Purpureocillium, Clavispora and Scedosporium with a distribution percentage of 31.25, 21.88, 15.63, 12.50 and 18.75 %, respectively.These isolates showed multimetals tolerance and bioremoval efficiency against a large number of heavy metals (Fe2+, Ni2+, Cr6+, Zn2+, As3+, Cu2+, Cd2+, Pb2+, Ag+ and Hg2+) along with potent bioremediation activity toward crude oil and the polycyclic aromatic hydrocarbons. Interestingly, the mycobiome resistance patterns obtained against different classes of fungal antibiotics including azole (fluconazole, itraconazole, voriconazole, posaconazole, isavuconazole and ketoconazole), echinocandin (anidulafungin, caspofungin and micafungin) and polyene (amphotericin B) drugs proved the prevalence of antibiotic resistance among the mycobiome of refinery industry in Saudi Arabia is relatively low. The fungal isolate under isolation code JAZ-20 showed the highest bioremoval efficiency against heavy metals (90.8–100.0 %), crude oil (89.50 %), naphthalene (96.7 %), phenanthrene (92.52 %), fluoranthene (100.0 %), anthracene (90.34 %), pyrene (85.60 %) and chrysene (83.4 %). It showed the highest bioremoval capacity ranging from 85.72 % to 100.0 % against numerous pollutants found in a wide array of industrial effluents, including diclofenac, ibuprofen, carbamazepine, acetaminophen, sulfamethoxazole, bisphenol, bleomycin, vincristine, dicofol, methyl parathion, atrazine, diuron, dieldrin, chlorpyrifos, profenofos and phenanthrene. The isolate JAZ-20 was chosen for molecular typing, cytotoxicity assessment, analysis of volatile compounds and optimization investigations. Based on phenotypic, biochemical and phylogenetic analysis, strain JAZ-20 identified as Scedosporium apiospermum JAZ-20. This strain is newly discovered in industrial effluents in Saudi Arabia. Fungal strain JAZ-20 consistently produced various types of saturated and unsaturated fatty acids. the main fatty acids were C14:0 (1.95 %), iso-C14:0 (2.98 %), anteiso-C14:0 (2.13 %), iso-C15:0 (9.16 %), anteiso-C15:0 (11.75 %), C15:0 (7.42 %), C15:1 (2.37 %), anteiso-C16:0 (3.4 %), C16:0 (10.3 %), iso-C16:0 (9.5 %), C17:1 (1.36 %), anteiso-C17:1 (8.64 %), iso-C18:0 (11.0 %), C18:0 (3.63 %), anteiso-C19:0 (3.78 %), anteiso-C20:0 (2.0 %), iso-C21:0 (2.44 %), C23:0 (1.15 %), and C24:0 (2.17 %). These fatty acids serve as natural and eco-friendly antifungal agents, promoting fungal resistance and inhibiting the production of mycotoxins in the environment. Despite being an environmental isolate, its cytotoxicity was assessed against both normal and cancerous human cell lines. The IC50 values of JAZ-20 extract were 8.92, 10.41, 20.0, 16.5, and 40.0 μg/mL against WI38, MRC5, MCF10A, HEK293 and HDFs normal cells and 43.26, 33.75, and 40.0 μg/mL against liver (HepG2), breast (A549) and cervix (HeLa) cancers, respectively. Based on gas chromatography-mass spectrometry (GC-MS), analysis the extract of S. apiospermum JAZ-20 showed 47 known volatile compounds (VOCs) for varied and significant biological activities. Enhancing the bioremoval efficiency of heavy metals from actual refining wastewater involves optimizing process parameters. The parameters optimized were the contact time, the fungal biomass dosage, pH, temperature and agitation rate.