Symmetry (Aug 2021)

Rational Interpolation: Jacobi’s Approach Reminiscence

  • Alexei Uteshev,
  • Ivan Baravy,
  • Elizaveta Kalinina

DOI
https://doi.org/10.3390/sym13081401
Journal volume & issue
Vol. 13, no. 8
p. 1401

Abstract

Read online

We treat the interpolation problem {f(xj)=yj}j=1N for polynomial and rational functions. Developing the approach originated by C. Jacobi, we represent the interpolants by virtue of the Hankel polynomials generated by the sequences of special symmetric functions of the data set like {∑j=1Nxjkyj/W′(xj)}k∈N and {∑j=1Nxjk/(yjW′(xj))}k∈N; here, W(x)=∏j=1N(x−xj). We also review the results by Jacobi, Joachimsthal, Kronecker and Frobenius on the recursive procedure for computation of the sequence of Hankel polynomials. The problem of evaluation of the resultant of polynomials p(x) and q(x) given a set of values {p(xj)/q(xj)}j=1N is also tackled within the framework of this approach. An effective procedure is suggested for recomputation of rational interpolants in case of extension of the data set by an extra point.

Keywords