Scientific Reports (Mar 2022)

Characterizations of botanical attractant of Halyomorpha halys and selection of relevant deorphanization candidates via computational approach

  • Yong-Zhi Zhong,
  • Ming-Hui Xie,
  • Cong Huang,
  • Xue Zhang,
  • Li Cao,
  • Hao-Liang Chen,
  • Feng Zhang,
  • Fang-Hao Wan,
  • Ri-Chou Han,
  • Rui Tang

DOI
https://doi.org/10.1038/s41598-022-07840-x
Journal volume & issue
Vol. 12, no. 1
pp. 1 – 11

Abstract

Read online

Abstract Halyomorpha halys has been recognized as a global cross-border pest species. Along with well-established pheromone trapping approaches, there have been many attempts to utilize botanical odorant baits for field monitoring. Due to sensitivity, ecological friendliness, and cost-effectiveness for large-scale implementation, the selection of botanical volatiles as luring ingredients and/or synergists for H. halys is needed. In the current work, botanical volatiles were tested by olfactometer and electrophysiological tests. Results showed that linalool oxide was a potential candidate for application as a behavioral modifying chemical. It drove remarkable attractiveness toward H. halys adults in Y-tube assays, as well as eliciting robust electroantennographic responsiveness towards antennae. A computational pipeline was carried out to screen olfactory proteins related to the reception of linalool oxide. Simulated docking activities of four H. halys odorant receptors and two odorant binding proteins to linalool oxide and nerolidol were performed. Results showed that all tested olfactory genes were likely to be involved in plant volatile-sensing pathways, and they tuned broadly to tested components. The current work provides insights into the later development of field demonstration strategies using linalool oxide and its molecular targets.