EPJ Web of Conferences (Jan 2018)
Strangeness freeze-out: role of system size and missing resonances
Abstract
The conventional approach to treat strangeness freezeout has been to consider a unified freezeout scheme where strangeness freezes out along with the nonstrange hadrons (1CFO), with or without an additional parameter accounting for out-of-equilibrium strangeness production (γS). Several alternate scenarios have been formulated lately. Here, we will focus on flavor dependent freezeout with early freezeout of strangeness (2CFO) in comparison to 1CFO and its variants with respect to the roles played by the system size and missing resonances predicted by different theoretical approaches but yet to be seen in experiments. In contrast to the performance of 1CFO with/without γS that is insensitive to system size, 2CFO exhibits a clear system size dependence-while for Pb+Pb the χ2/NDF is around 0-2, for smaller system size in p+Pb and p+p, the χ2/NDF> 5 and larger than 1CFO+γS. This clearly shows a system size dependence of the preference for the freezeout scheme, while 2CFO is preferred in Pb+Pb, 1CFO+γS is preferred in p+Pb and p+p. We have further investigated the role of the missing resonances on strangeness freezeout across SPS to LHC beam energies.