PLoS ONE (Jan 2013)

The UDP-glucuronate decarboxylase gene family in Populus: structure, expression, and association genetics.

  • Qingzhang Du,
  • Wei Pan,
  • Jiaxing Tian,
  • Bailian Li,
  • Deqiang Zhang

DOI
https://doi.org/10.1371/journal.pone.0060880
Journal volume & issue
Vol. 8, no. 4
p. e60880

Abstract

Read online

In woody crop plants, the oligosaccharide components of the cell wall are essential for important traits such as bioenergy content, growth, and structural wood properties. UDP-glucuronate decarboxylase (UXS) is a key enzyme in the synthesis of UDP-xylose for the formation of xylans during cell wall biosynthesis. Here, we isolated a multigene family of seven members (PtUXS1-7) encoding UXS from Populus tomentosa, the first investigation of UXSs in a tree species. Analysis of gene structure and phylogeny showed that the PtUXS family could be divided into three groups (PtUXS1/4, PtUXS2/5, and PtUXS3/6/7), consistent with the tissue-specific expression patterns of each PtUXS. We further evaluated the functional consequences of nucleotide polymorphisms in PtUXS1. In total, 243 single-nucleotide polymorphisms (SNPs) were identified, with a high frequency of SNPs (1/18 bp) and nucleotide diversity (πT = 0.01033, θw = 0.01280). Linkage disequilibrium (LD) analysis showed that LD did not extend over the entire gene (r (2)<0.1, P<0.001, within 700 bp). SNP- and haplotype-based association analysis showed that nine SNPs (Q <0.10) and 12 haplotypes (P<0.05) were significantly associated with growth and wood property traits in the association population (426 individuals), with 2.70% to 12.37% of the phenotypic variation explained. Four significant single-marker associations (Q <0.10) were validated in a linkage mapping population of 1200 individuals. Also, RNA transcript accumulation varies among genotypic classes of SNP10 was further confirmed in the association population. This is the first comprehensive study of the UXS gene family in woody plants, and lays the foundation for genetic improvements of wood properties and growth in trees using genetic engineering or marker-assisted breeding.