Asian-Australasian Journal of Animal Sciences (May 2019)

Fermentation characteristics, chemical composition and microbial community of tropical forage silage under different temperatures

  • Dongxia Li,
  • Kuikui Ni,
  • Yingchao Zhang,
  • Yanli Lin,
  • Fuyu Yang

DOI
https://doi.org/10.5713/ajas.18.0085
Journal volume & issue
Vol. 32, no. 5
pp. 665 – 674

Abstract

Read online

Objective In tropical regions, as in temperate regions where seasonality of forage production occurs, well-preserved forage is necessary for animal production during periods of forage shortage. However, the unique climate conditions (hot and humid) and forage characteristics (high moisture content and low soluble carbohydrate) in the tropics make forage preservation more difficult. The current study used natural ensiling of tropical forage as a model to evaluate silage characteristics under different temperatures (28°C and 40°C). Methods Four tropical forages (king grass, paspalum, white popinac, and stylo) were ensiled under different temperatures (28°C and 40°C). After ensiling for 30 and 60 days, samples were collected to examine the fermentation quality, chemical composition and microbial community. Results High concentrations of acetic acid (ranging from 7.8 to 38.5 g/kg dry matter [DM]) were detected in silages of king grass, paspalum and stylo with relatively low DM (ranging from 23.9% to 30.8% fresh material [FM]) content, acetic acid production was promoted with increased temperature and prolonged ensiling. Small concentrations of organic acid (ranging from 0.3 to 3.1 g/kg DM) were detected in silage of white popinac with high DM content (50.8% FM). The microbial diversity analysis indicated that Cyanobacteria originally dominated the bacterial community for these four tropical forages and was replaced by Lactobacillus and Enterobacter after ensiling. Conclusion The results suggested that forage silages under tropical climate conditions showed enhanced acetate fermentation, while high DM materials showed limited fermentation. Lactobacillus and Enterobacter were the most probable genera responsible for tropical silage fermentation.

Keywords