iScience (Sep 2022)

The nature of K-induced 2H and 1T’-MoS2 species and their phase transition behavior for the synthesis of methanethiol (CH3SH)

  • Zhizhi Xu,
  • Jian Fang,
  • Jichang Lu,
  • Dedong He,
  • Sufang He,
  • Yongming Luo

Journal volume & issue
Vol. 25, no. 9
p. 104999

Abstract

Read online

Summary: The one-step reaction approach from syngas with hydrogen sulfide (CO/H2/H2S) over potassium (K) promoted Molybdenum disulfide (MoS2) materials can provide alternatives for the synthesis of methanethiol (CH3SH). However, the direct confirmation and determination of the real active nature of K-induced 2H and 1T′-MoS2 for this reaction and the corresponding phase transformation behavior and origin of K-induced 2H-MoS2 from/to 1T′-MoS2 remains unclear. Herein, we proved at the atomic level the precise position of K over 1T′-MoS2 and 2H-MoS2 species using the technique of HAADF-STEM. A relationship between K-induced 1T′ and 2H-MoS2 phases and the catalytic property to synthesize CH3SH was established, and K-intercalated 1T′-MoS2 phase was confirmed to have excellent catalytic performances. Moreover, the behavior, origin, and influencing factors of phase transformation of 2H-MoS2 from/to 1T′-MoS2 in the existence of K were well proved.

Keywords