International Journal of Molecular Sciences (Apr 2023)

Upregulation of APAF1 and CSF1R in Peripheral Blood Mononuclear Cells of Parkinson’s Disease

  • Kuo-Hsuan Chang,
  • Chia-Hsin Liu,
  • Yi-Ru Wang,
  • Yen-Shi Lo,
  • Chun-Wei Chang,
  • Hsiu-Chuan Wu,
  • Chiung-Mei Chen

DOI
https://doi.org/10.3390/ijms24087095
Journal volume & issue
Vol. 24, no. 8
p. 7095

Abstract

Read online

Increased oxidative stress and neuroinflammation play a crucial role in the pathogenesis of Parkinson’s disease (PD). In this study, the expression levels of 52 genes related to oxidative stress and inflammation were measured in peripheral blood mononuclear cells of the discovery cohort including 48 PD patients and 25 healthy controls. Four genes, including ALDH1A, APAF1, CR1, and CSF1R, were found to be upregulated in PD patients. The expression patterns of these genes were validated in a second cohort of 101 PD patients and 61 healthy controls. The results confirmed the upregulation of APAF1 (PD: 0.34 ± 0.18, control: 0.26 ± 0.11, p CSF1R (PD: 0.38 ± 0.12, control: 0.33 ± 0.10, p = 0.005) in PD patients. The expression level of APAF1 was correlated with the scores of the Unified Parkinson’s Disease Rating Scale (UPDRS, r = 0.235, p = 0.018) and 39-item PD questionnaire (PDQ-39, r = 0.250, p = 0.012). The expression level of CSF1R was negatively correlated with the scores of the mini-mental status examination (MMSE, r = −0.200, p = 0.047) and Montréal Cognitive Assessment (MoCA, r = −0.226, p = 0.023). These results highly suggest that oxidative stress biomarkers in peripheral blood may be useful in monitoring the progression of motor disabilities and cognitive decline in PD patients.

Keywords