Tecnura (Jan 2017)
Methodology for selection of attributes and operating conditions for SVM-Based fault locator's
Abstract
Context: Energy distribution companies must employ strategies to meet their timely and high quality service, and fault-locating techniques represent and agile alternative for restoring the electric service in the power distribution due to the size of distribution services (generally large) and the usual interruptions in the service. However, these techniques are not robust enough and present some limitations in both computational cost and the mathematical description of the models they use. Method: This paper performs an analysis based on a Support Vector Machine for the evaluation of the proper conditions to adjust and validate a fault locator for distribution systems; so that it is possible to determine the minimum number of operating conditions that allow to achieve a good performance with a low computational effort. Results: We tested the proposed methodology in a prototypical distribution circuit, located in a rural area of Colombia. This circuit has a voltage of 34.5 KV and is subdivided in 20 zones. Additionally, the characteristics of the circuit allowed us to obtain a database of 630.000 records of single-phase faults and different operating conditions. As a result, we could determine that the locator showed a performance above 98% with 200 suitable selected operating conditions. Conclusions: It is possible to improve the performance of fault locators based on Support Vector Machine. Specifically, these improvements are achieved by properly selecting optimal operating conditions and attributes, since they directly affect the performance in terms of efficiency and the computational cost.
Keywords