Remote Sensing (May 2011)
Estimating Single Tree Stem Volume of Pinus sylvestris Using Airborne Laser Scanner and Multispectral Line Scanner Data
Abstract
So far, only a few studies have been carried out in central European forests to estimate individual tree stem volume of pine trees from high resolution remote sensing data. In this article information derived from airborne laser scanner and multispectral line scanner data were tested to predict the stem volume of 178 pines (Pinus sylvestris) in a study site in the south-west of Germany. First, tree crowns were automatically delineated using both multispectral and laser scanner data. Next, tree height, crown diameter and crown volume were derived for each crown segment. All combinations of the derived tree features were used as explanatory variables in allometric models to predict the stem volume. A model with tree height and crown diameter had the best performance with respect to the prediction accuracy determined by a leave-one-out cross-validation: Root Mean Square Error (RMSE) = 24.02% and Bias = 1.36%.
Keywords