Systems Science & Control Engineering (Jan 2018)
New result on the mean-square exponential input-to-state stability of stochastic delayed recurrent neural networks
Abstract
In this paper, we solve the mean-square exponential input-to-state stability problem for a class of stochastic delayed recurrent neural networks with time-varying coefficients. With the aid of stochastic analysis theory and a Lyapunov-Krasovskii functional, we derive a novel criterion that ensures the given system is mean-square exponentially input-to-state stable. Furthermore, the new criterion generalizes and improves some known results. Finally, two examples and their numerical simulations are provided to demonstrate the theoretical results.
Keywords