Actuators (Aug 2020)
Pneumatically Actuated Thin Glass Microlens for On-Chip Multi-Magnification Observations
Abstract
This paper presents a self-contained micro-optical system that is magnification-controlled by adjusting the positions of the microlens in the device via pneumatic air pressure. Unlike conventional dynamic microlenses made from a liquid or polydimethylsiloxane (PDMS) that change their shapes via external actuation, this system combines a fixed-curvature glass microlens, an inflatable PDMS layer, and the external pneumatic air pressure supply as an actuator. This device showed several advantages, including stable inflation, firm structure, and light weight; it achieved a larger displacement using the glass microlens structure than has been reported before. This fixed-curvature microlens was made from 120 µm-thick flat thin glass slides, and the system magnification was manipulated by the deflection of a 100 µm-thick PDMS layer to alter the distance from the microlens to the microfluidic channel. The system magnification power was proportional to the air pressure applied to the device, and with a 2.5 mbar air pressure supply, a 2.2X magnification was achieved. This optical system is ideal for combining with high resolving power microscopy for various short working distance observation tasks, and it is especially beneficial for various chip-based analyses.
Keywords