Journal of Space Weather and Space Climate (Jan 2018)

Analysis and interpretation of inner-heliospheric SEP events with the ESA Standard Radiation Environment Monitor (SREM) onboard the INTEGRAL and Rosetta Missions

  • Georgoulis Manolis K.,
  • Papaioannou Athanasios,
  • Sandberg Ingmar,
  • Anastasiadis Anastasios,
  • Daglis Ioannis A.,
  • Rodríguez-Gasén Rosa,
  • Aran Angels,
  • Sanahuja Blai,
  • Nieminen Petteri

DOI
https://doi.org/10.1051/swsc/2018027
Journal volume & issue
Vol. 8
p. A40

Abstract

Read online

Using two heliospheric vantage points, we study 22 solar energetic particle (SEP) events, 14 of which were detected at both locations. SEP proton events were detected during the declining phase of solar cycle 23 (November 2003–December 2006) by means of two nearly identical Standard Radiation Environment Monitor (SREM) units in energies ranging between 12.6 MeV and 166.3 MeV. In this work we combine SREM data with diverse solar and interplanetary measurements, aiming to backtrace solar eruptions from their impact in geospace (i.e., from L1 Lagrangian point to Earth’s magnetosphere) to their parent eruptions at the Sun’s low atmosphere. Our SREM SEP data support and complement a consistent inner-heliospheric description of solar eruptions (solar flares and coronal mass ejections [CMEs]) and their magnetospheric impact. In addition, they provide useful information on the understanding of the origin, acceleration, and propagation of SEP events at multi-spacecraft settings. All SEP events in our sample originate from major eruptions consisting of major (>M-class) solar flares and fast (>1800 km/s, on average), overwhelmingly (>78%) halo, CMEs. All but one SEP event studied are unambiguously associated with shock-fronted CMEs, suggesting a CME-driven shock acceleration mechanism. Moreover, a significant correlation is found between the SEP event peak and the onset of the storm sudden commencement, that might help improve prediction of magnetospheric disturbances. In general, SEP events correlate better with interplanetary (i.e., in-situ; L1-based) than with solar eruption features. Our findings support (a) the routine use of cost-effective SREM units, or future improvements thereof, for the detection of SEP events and (b) their implementation in multi-spacecraft settings as a means to improve both the physical understanding of SEP events and their forecasting.

Keywords