Polymers (Sep 2024)

Advances in the Fabrication, Properties, and Applications of Electrospun PEDOT-Based Conductive Nanofibers

  • Emanuele Alberto Slejko,
  • Giovanni Carraro,
  • Xiongchuan Huang,
  • Marco Smerieri

DOI
https://doi.org/10.3390/polym16172514
Journal volume & issue
Vol. 16, no. 17
p. 2514

Abstract

Read online

The production of nanofibers has become a significant area of research due to their unique properties and diverse applications in various fields, such as biomedicine, textiles, energy, and environmental science. Electrospinning, a versatile and scalable technique, has gained considerable attention for its ability to fabricate nanofibers with tailored properties. Among the wide array of conductive polymers, poly(3,4-ethylenedioxythiophene) (PEDOT) has emerged as a promising material due to its exceptional conductivity, environmental stability, and ease of synthesis. The electrospinning of PEDOT-based nanofibers offers tunable electrical and optical properties, making them suitable for applications in organic electronics, energy storage, biomedicine, and wearable technology. This review, with its comprehensive exploration of the fabrication, properties, and applications of PEDOT nanofibers produced via electrospinning, provides a wealth of knowledge and insights into leveraging the full potential of PEDOT nanofibers in next-generation electronic and functional devices by examining recent advancements in the synthesis, functionalization, and post-treatment methods of PEDOT nanofibers. Furthermore, the review identifies current challenges, future directions, and potential strategies to address scalability, reproducibility, stability, and integration into practical devices, offering a comprehensive resource on conductive nanofibers.

Keywords