Micromachines (Oct 2016)

In-Plane MEMS Shallow Arch Beam for Mechanical Memory

  • Md Abdullah Al Hafiz,
  • Lakshmoji Kosuru,
  • Abdallah Ramini,
  • Karumbaiah N. Chappanda,
  • Mohammad I. Younis

DOI
https://doi.org/10.3390/mi7100191
Journal volume & issue
Vol. 7, no. 10
p. 191

Abstract

Read online

We demonstrate a memory device based on the nonlinear dynamics of an in-plane microelectromechanical systems (MEMS) clamped–clamped beam resonator, which is deliberately fabricated as a shallow arch. The arch beam is made of silicon, and is electrostatically actuated. The concept relies on the inherent quadratic nonlinearity originating from the arch curvature, which results in a softening behavior that creates hysteresis and co-existing states of motion. Since it is independent of the electrostatic force, this nonlinearity gives more flexibility in the operating conditions and allows for lower actuation voltages. Experimental results are generated through electrical characterization setup. Results are shown demonstrating the switching between the two vibrational states with the change of the direct current (DC) bias voltage, thereby proving the memory concept.

Keywords