Microbial Cell Factories (Jul 2023)

The novel properties of Kluyveromyces marxianus glucose sensor/receptor repressor pathway and the construction of glucose repression-released strains

  • Lingya Wang,
  • Anran Wang,
  • Dongmei Wang,
  • Jiong Hong

DOI
https://doi.org/10.1186/s12934-023-02138-7
Journal volume & issue
Vol. 22, no. 1
pp. 1 – 19

Abstract

Read online

Abstract Background Glucose repression in yeast leads to the sequential or diauxic utilization of mixed sugars and reduces the co-utilization of glucose and xylose from lignocellulosic biomasses. Study of the glucose sensing pathway helps to construct glucose repression-released yeast strains and enhance the utilization of lignocellulosic biomasses. Results Herein, the glucose sensor/receptor repressor (SRR) pathway of Kluyveromyces marxianus which mainly consisted of KmSnf3, KmGrr1, KmMth1, and KmRgt1 was studied. The disruption of KmSNF3 led to a release of glucose repression, enhanced xylose consumption and did not result in deficient glucose utilization. Over-expression of glucose transporter gene restored the mild decrease of glucose utilization ability of Kmsnf3 strain to a similar level of the wildtype strain but did not restore glucose repression. Therefore, the repression on glucose transporter is parallel to glucose repression to xylose and other alternative carbon utilization. KmGRR1 disruption also released glucose repression and kept glucose utilization ability, although its xylose utilization ability was very weak with xylose as sole carbon source. The stable mutant of KmMth1-ΔT enabled the release of glucose repression irrespective that the genetic background was Kmsnf3, Kmmth1, or wildtype. Disruption of KmSNF1 in the Kmsnf3 strain or KmMTH1-ΔT overexpression in Kmsnf1 strain kept constitutive glucose repression, indicating that KmSNF1 was necessary to release the glucose repression in both SRR and Mig1-Hxk2 pathway. Finally, overexpression of KmMTH1-ΔT released the glucose repression to xylose utilization in S. cerevisiae. Conclusion The glucose repression-released K. marxianus strains constructed via a modified glucose SRR pathway did not lead to a deficiency in the utilization ability of sugar. The obtained thermotolerant, glucose repression-released, and xylose utilization-enhanced strains are good platforms for the construction of efficient lignocellulosic biomass utilization yeast strains.

Keywords