Remote Sensing (Jun 2019)
Multiple-Scale Variations of Sea Ice and Ocean Circulation in the Bering Sea Using Remote Sensing Observations and Numerical Modeling
Abstract
The Bering Sea is located between the Aleutian Low and Siberian High, with strong seasonal variations in the oceanic circulation and the sea ice coverage. Within such a large-scale system, the physical processes in the Bering Sea carry interannual variability. The special topography in the Bering Sea traps a strong jet along the Bering Slope, whose instability enriches the eddy activity in the region. A Regional Oceanic Modeling System (ROMS), coupled with a sea ice module, is employed to study multiple-scale variability in the sea ice and oceanic circulation in the Bering Sea for interannual, seasonal, and intra-seasonal eddy variations. The model domain covers the whole Bering Sea and a part of the Chukchi Sea and south of Aleutian Islands, with an averaged spatial resolution of 5 km. The external forcings are momentum, heat, and freshwater flux at the surface and adaptive nudging to reanalysis fields at the boundaries. The oceanic model starts in an equilibrium state from a multiple year cyclical climatology run, and then it is integrated from years 1990 through 2004. The 15 year simulation is analyzed and assessed against the observational data. The model accurately reproduces the seasonal and interannual variations in the sea ice coverage compared with the satellite-observed sea ice data from the National Snow and Ice Data Center (NSIDC). Sea surface temperature and eddy kinetic energy patterns from the ROMS agree with satellite remote sensing data. The transportation through the Bering Strait is also comparable with the estimate of mooring data. The mechanism for seasonal and interannual variation in the Bering Sea is connected to the Siberia-Aleutian index. Eddy variation along the Bering Slope is discussed. The model also simulates polynya generation and evolution around the St. Lawrence Island.
Keywords