Frontiers in Plant Science (Apr 2019)

Arabinogalactan Proteins and the Extracellular Matrix of Charophytes: A Sticky Business

  • Kattia Palacio-López,
  • Berke Tinaz,
  • Andreas Holzinger,
  • David S. Domozych

DOI
https://doi.org/10.3389/fpls.2019.00447
Journal volume & issue
Vol. 10

Abstract

Read online

Charophytes represent the group of green algae whose ancestors invaded land and ultimately gave rise to land plants 450 million years ago. While Zygnematophyceae are believed to be the direct sister lineage to embryophytes, different members of this group (Penium, Spirogyra, Zygnema) and the advanced thallus forming Coleochaete as well as the sarcinoid basal streptophyte Chlorokybus were investigated concerning their vegetative extracellular matrix (ECM) properties. Many taxa exhibit adhesion phenomena that are critical for affixing to a substrate or keeping cells together in a thallus, however, there is a great variety in possible reactions to e.g., wounding. In this study an analysis of adhesion mechanisms revealed that arabinogalactan proteins (AGPs) are most likely key adhesion molecules. Through use of monoclonal antibodies (JIM13) or the Yariv reagent, AGPs were located in cell surface sheaths and cell walls that were parts of the adhesion focal zones on substrates including wound induced rhizoid formation. JIM5, detecting highly methyl-esterfied homoglacturonan and JIM8, an antibody detecting AGP glycan and LM6 detecting arabinans were also tested and a colocalization was found in several examples (e.g., Zygnema) suggesting an interplay between these components. AGPs have been described in this study to perform both, cell to cell adhesion in algae forming thalli and cell to surface adhesion in the filamentous forms. These findings enable a broader evolutionary understanding of the function of AGPs in charophyte green algae.

Keywords