Scientific Reports (Nov 2024)
ASPP2 deficiency promotes the progression of metabolic dysfunction-associated steatohepatitis via ACSL4 upregulation
Abstract
Abstract As a member of the p53-binding protein family, apoptosis-stimulating protein p53 2 (ASPP2) is closely related to autophagy and apoptosis. However, the mechanistic role of ASPP2 in the development of metabolic dysfunction-associated steatohepatitis (MASH) remains elusive. Therefore, we investigated the role and underlying mechanisms of ASPP2 in MASH progression in a mouse model of MASH and a cellular model of metabolic dysfunction-associated fatty liver disease. ASPP2 deficiency significantly promoted the inflammatory response, steatosis, and MASH progression in mice. Through transcriptomic analysis, increased ACSL4 expression was identified as a potential key factor. Further elucidation of the underlying mechanisms demonstrated that ASPP2 deficiency increased lipid accumulation and inhibited mitochondrial respiration capacity in HepG2 cells induced by oleic acid. However, silencing of ACSL4 reversed these effects. Thus, our study indicates that ASPP2 is an important regulator of MASH progression through ACSL4 upregulation, highlighting its potential as an alternative approach to MASH treatment.
Keywords