Sensors (Jan 2023)
Simulation of Layer Thickness Measurement in Thin Multi-Layered Material by Variable-Focus Laser Ultrasonic Testing
Abstract
Thin multi-layered materials are widely used in key structures of many high technology industries. To ensure the quality and safety of structures, layer thickness measurement by non-destructive testing (NDT) techniques is essential. In this paper, a novel approach for the measurement of each layer’s thickness in thin multi-layered material is proposed by using ring-shaped laser generated focused ultrasonic bulk waves. The proposed method uses a ring-shaped laser with a variable radius to generate shear waves with variable focus inside the structure. By analyzing the signal characteristics at the ring center when the laser radius varies from zero to maximum, the direct measurement of layer thickness can be realized, considering that only when the focal depth and the layer thickness satisfy the specific relationship, the reflected shear waves converge and form a peak at the ring center. This straightforward approach can increase the pulse-echo SNR and prevent the processing of aliasing signals, and therefore provides higher efficiency and accuracy for the layer thickness measurement. In order to investigate the feasibility of this method, finite element simulations were conducted to simulate the ring-shaped laser generated ultrasonic waves in multi-layered structure in detail. Following the principle of the proposed method, the layer thickness of a bi-layer and 3-layer structure were respectively measured using simulation data. The results confirm that the proposed method can accurately and efficiently measure the layer thickness of thin multi-layered material.
Keywords