PLoS ONE (Jan 2023)
Leopard density and the ecological and anthropogenic factors influencing density in a mixed-use landscape in the Western Cape, South Africa.
Abstract
Large carnivores face numerous threats, including habitat loss and fragmentation, direct killing, and prey depletion, leading to significant global range and population declines. Despite such threats, leopards (Panthera pardus) persist outside protected areas throughout most of their range, occupying diverse habitat types and land uses, including peri-urban and rural areas. Understanding of leopard population dynamics in mixed-use landscapes is limited, especially in South Africa, where the majority of leopard research has focused on protected areas. We use spatially explicit capture-recapture models to estimate leopard density across a mixed-use landscape of protected areas, farmland, and urban areas in the Overberg region of the Western Cape, South Africa. Data from 86 paired camera stations provided 221 independent captures of 25 leopards at 50 camera trap stations with a population density estimate of 0.64 leopards per 100 km2 (95% CI: 0.55-0.73). Elevation, terrain ruggedness, and vegetation productivity were important drivers of leopard density in the landscape, being highest on elevated remnants of natural land outside of protected areas. These results are similar to previous research findings in other parts of the Western Cape, where high-lying natural vegetation was shown to serve as both a refuge and a corridor for leopard movement in otherwise transformed landscapes. Given the low leopard density and the prevalence of transformed land intermixed with patches of more suitable leopard habitat, prioritising and preserving connectivity for leopards is vital in this shared landscape. Ecological corridors should be developed in partnership with private landowners through an inclusive and multifaceted conservation strategy which also incorporates monitoring of and rapid mitigation of emerging threats to leopards.