Water (Nov 2020)

Multivariate Analyses of Water Quality Dynamics Over Four Decades in the Barataria Basin, Mississippi Delta

  • John W. Day,
  • Bin Li,
  • Brian D. Marx,
  • Dongran Zhao,
  • Robert R. Lane

DOI
https://doi.org/10.3390/w12113143
Journal volume & issue
Vol. 12, no. 11
p. 3143

Abstract

Read online

Here we examine a combined dataset of water quality dynamics in the Barataria Basin, Louisiana based on transect studies from 1977 to 1978 (Seaton) and from 1994 to 2016. The Davis Pond river diversion into Lake Cataouatche began discharging Mississippi River water into the mid-basin in 2005, and so the later dataset was divided in Pre- and Post-diversion periods. The stations from these three datasets (Seaton, Pre- and Post-diversion) were combined into eleven station groupings for statistical analysis that included ANOVA and principal component analysis. In addition, Trophic State Index (TSI) scores were calculated for each grouping during the three time periods. Lake Cataouatche changed the most with the opening of the Davis Pond river diversion, becoming clearer and less eutrophic with addition of river water, which passed through a large wetland area where sediments were retained before entering the lake. The TSI results for the Seaton re-analysis were very similar to the original analysis and to that of the Pre- and Post-diversion datasets, indicating that the trophic status of the basin waters has remained relatively unchanged. The upper-basin has remained eutrophic with degraded water quality while the lower-basin has remained more mesotrophic without significant water quality deterioration. A main cause of water quality deterioration is agricultural runoff and pervasive hydrologic alteration that bypasses wetlands and causes most runoff to flow directly into water bodies.

Keywords