Journal of Genetic Engineering and Biotechnology (Dec 2017)
Association of manganese superoxide dismutase Ala16Val polymorphism in the incidence of acute myocardial infarction in the Egyptians
Abstract
Background: Oxidative stress has been implicated in various diseases including atherosclerosis; the most common pathologic process underlying acute myocardial infarction (AMI). The manganese superoxide dismutase (MnSOD) antioxidant enzyme affords the major defense against reactive oxygen species (ROS) within the mitochondria. MnSOD Alanine16Valine (A16V) single nucleotide polymorphism (SNP) has been shown to decrease MnSOD detoxification activity. Aim: A case-control study was conducted to investigate the association between MnSOD A16V polymorphism and the incidence of AMI in the Egyptians, investigate the contribution of oxidative stress represented by hexanoyl lysine adduct (HEL), an oxidative stress biomarker, in the pathogenesis of AMI and finally correlate the MnSOD genotypes with HEL serum levels. Methods: A total of 200 Egyptian subjects were recruited for the study; 100 AMI patients and 100 control subjects. Genotypes of the MnSOD A16V polymorphism were determined using a polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Serum HEL was measured by ELISA. Results: A significant difference in the distribution of the MnSOD A16V genotypes was observed; VV genotype was significantly higher in AMI than controls (p ≤ 0.0001). Also, studying the allele frequencies revealed that Val allele was significantly higher in AMI than controls (p ≤ 0.0001). Serum analysis showed higher levels of HEL in AMI patients (p = 0.0142). Furthermore, HEL levels were found to be significantly higher in VV genotype in AMI (p = 0.0273). Conclusions: Our study suggests that MnSOD A16V polymorphism is associated with increased risk of developing AMI in the Egyptians. Moreover, the VV genotype is associated with higher HEL levels.
Keywords