Horticulturae (Feb 2022)
Role of Reactive Oxygen Species against Pathogens in Relation to Postharvest Disease of Papaya Fruit
Abstract
Reactive oxygen species (ROS) play an active role in plant defense. Polyphenol oxidase (PPO) and peroxidase (POD) participate in the synthesis of phytoalexins. The comparative activities of ROS, including hydrogen peroxide (H2O2), superoxide anions (O2−), and hydroxyl radicals (·OH), against the fungal pathogen Colletotrichum gloeosporioides from papaya fruit were evaluated. The effects of ROS on PPO and POD activities in papaya fruit inoculated with C. gloeosporioides and the development of natural decay in intact fruit were also investigated. ·OH was the most effective in inhibiting conidial germination and mycelial growth of C. gloeosporioides in vitro. However, 20 or 30 mM H2O2 exhibited the best control of the three ROS treatments at ameliorating the disease symptoms associated with the highest levels of PPO and POD activities in papaya fruit. Furthermore, the activities of PPO and POD negatively correlated with the disease index. Overall, H2O2 treatments can induce the resistance of papaya fruit against C. gloeosporioides owing to the enhanced activities of PPO and POD. Treatment with 20 mM H2O2 also significantly reduced the incidence of decay in intact papaya fruit in semi-commercial experiment, which could make it a potential alternative manner to control postharvest disease in papaya fruit.
Keywords