Diagnostics (Jun 2023)

Identifying Postural Instability in Children with Cerebral Palsy Using a Predictive Model: A Longitudinal Multicenter Study

  • Carlo Marioi Bertoncelli,
  • Domenico Bertoncelli,
  • Sikha S. Bagui,
  • Subhash C. Bagui,
  • Stefania Costantini,
  • Federico Solla

DOI
https://doi.org/10.3390/diagnostics13122126
Journal volume & issue
Vol. 13, no. 12
p. 2126

Abstract

Read online

Insufficient postural control and trunk instability are serious concerns in children with cerebral palsy (CP). We implemented a predictive model to identify factors associated with postural impairments such as spastic or hypotonic truncal tone (TT) in children with CP. We conducted a longitudinal, double-blinded, multicenter, descriptive study of 102 teenagers with CP with cognitive impairment and severe motor disorders with and without truncal tone impairments treated in two specialized hospitals (60 inpatients and 42 outpatients; 60 males, mean age 16.5 ± 1.2 years, range 12 to 18 yrs). Clinical and functional data were collected between 2006 and 2021. TT-PredictMed, a multiple logistic regression prediction model, was developed to identify factors associated with hypotonic or spastic TT following the guidelines of “Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis”. Predictors of hypotonic TT were hip dysplasia (p = 0.01), type of etiology (postnatal > perinatal > prenatal causes; p = 0.05), male gender, and poor manual (p = 0.01) and gross motor function (p = 0.05). Predictors of spastic TT were neuromuscular scoliosis (p = 0.03), type of etiology (prenatal > perinatal > postnatal causes; p diplegia > hemiplegia; p = 0.05), presence of dystonia (p = 0.001), and epilepsy (refractory > controlled, p = 0.009). The predictive model’s average accuracy, sensitivity, and specificity reached 82%. The model’s accuracy aligns with recent studies on applying machine learning models in the clinical field.

Keywords