Standards (Apr 2025)
Evaluating the Potential of Roof Water Harvesting System for Drinking Water Supplies During Emergencies Under the Impacts of Climate Change: ‘A Case Study of Swat District, Pakistan’
Abstract
It is well understood that climate change is a major cause of the environmental shifts that are significantly impacting human lives. The floods caused by climate change are not only occurring more frequently each year, but they also bring up the problem of access to clean water for drinking and other daily usage for the affected communities. The Swat district of the Khyber Pakhtunkhwa province in Pakistan is one of the impacted regions and the growing concern for clean water access is yet to be resolved. This study aims to propose a sustainable solution to water access during the emergencies, particularly in flood and drought situations. While the roof water harvesting system (RWHS) is well established and functional in many developed regions, its potential remains underexplored in Pakistan. This research study analyzed the climate change projection data for the Saidu Sharif region of Swat. The regional climate data are gathered from the Shared Socio-economic Pathways (SSPs) for the period from 2015 to 2045. Five general circulation models (GCMs) were selected based on their performance in South Asian climate simulations. Analysis of the regional forecasted climate data indicates that almost all of the five climate models have predicted the periods of excessive rainfall to occur in the months of July, August, and September, while prolonged dry seasons may last between 271 and 325 days annually. Hydrological modeling was used to estimate RWHS performance, which incorporated the key parameters such as catchment area, runoff coefficient, and rainfall intensity. The findings suggest that the proposed RWHS could meet basic drinking water needs during the floods and even during the drought periods near around 100% satisfaction of water demand under certain conditions. For example, for an average drought period of 273 days, a household of seven people with a per capita daily water demand of 17 L requires a storage capacity of 33 m3. On the other hand, for a maximum drought duration of 325 days, the required storage volume increases to 39 m3. Demand satisfaction calculations are also used to evaluate the effectiveness of the proposed model. This research contributes to addressing the growing water scarcity challenge posed by climate change in the Swat region and offers a sustainable and practical solution.
Keywords