Australasian Journal of Plastic Surgery (Mar 2019)
Imaging and printing in plastic and reconstructive surgery part 1: established techniques
Abstract
**Background**: An increasing number of reconstructive surgeons are using modern imaging technologies for preoperative planning and intraoperative surgical guidance. Conventional imaging modalities such as CT and MRI are relatively affordable and widely accessible and offer powerful functionalities. In the first of a two-part series, we evaluate established three-dimensional (3D) imaging and printing techniques based on CT and MRI used in plastic and reconstructive surgery. **Method**: A review of the published English literature dating from 1950 to 2017 was taken using databases such as PubMed, MEDLINE®, Web of Science and EMBASE. **Result**: In plastic and reconstructive surgery, the most commonly used, free software platforms are 3D Slicer (Surgical Planning Laboratory, Boston, MA, USA) and OsiriX (Pixmeo, Geneva, Switzerland). Perforator mapping using 3D-reconstructed images from computed tomography angiography (CTA) and magnetic resonance angiography (MRA) is commonly used for preoperative planning. Three- dimensional volumetric analysis using current software techniques remains labour-intensive and reliant on operator experience. Three-dimensional printing has been investigated extensively since its introduction. As more free open-source software suites and affordable 3D printers become available, 3D printing is becoming more accessible for clinicians. **Conclusion**: Numerous studies have explored the application of 3D-rendered conventional imaging modalities for perforator mapping, volumetric analysis and printing. However, there is a lack of comprehensive review of all established 3D imaging and printing techniques in a language suitable for clinicians.