PLoS ONE (Jan 2018)

Transient viscous response of the human cornea probed with the Surface Force Apparatus.

  • Bruno Zappone,
  • Navinkumar J Patil,
  • Marco Lombardo,
  • Giuseppe Lombardo

DOI
https://doi.org/10.1371/journal.pone.0197779
Journal volume & issue
Vol. 13, no. 5
p. e0197779

Abstract

Read online

Knowledge of the biomechanical properties of the human cornea is crucial for understanding the development of corneal diseases and impact of surgical treatments (e.g., corneal laser surgery, corneal cross-linking). Using a Surface Force Apparatus we investigated the transient viscous response of the anterior cornea from donor human eyes compressed between macroscopic crossed cylinders. Corneal biomechanics was analyzed using linear viscoelastic theory and interpreted in the framework of a biphasic model of soft hydrated porous tissues, including a significant contribution from the pressurization and viscous flow of fluid within the corneal tissue. Time-resolved measurements of tissue deformation and careful determination of the relaxation time provided an elastic modulus in the range between 0.17 and 1.43 MPa, and fluid permeability of the order of 10-13 m4/(N∙s). The permeability decreased as the deformation was increased above a strain level of about 10%, indicating that the interstitial space between fibrils of the corneal stromal matrix was reduced under the effect of strong compression. This effect may play a major role in determining the observed rate-dependent non-linear stress-strain response of the anterior cornea, which underlies the shape and optical properties of the tissue.