Quantum (Feb 2022)

Identification of quantum scars via phase-space localization measures

  • Saúl Pilatowsky-Cameo,
  • David Villaseñor,
  • Miguel A. Bastarrachea-Magnani,
  • Sergio Lerma-Hernández,
  • Lea F. Santos,
  • Jorge G. Hirsch

DOI
https://doi.org/10.22331/q-2022-02-08-644
Journal volume & issue
Vol. 6
p. 644

Abstract

Read online

There is no unique way to quantify the degree of delocalization of quantum states in unbounded continuous spaces. In this work, we explore a recently introduced localization measure that quantifies the portion of the classical phase space occupied by a quantum state. The measure is based on the $\alpha$-moments of the Husimi function and is known as the Rényi occupation of order $\alpha$. With this quantity and random pure states, we find a general expression to identify states that are maximally delocalized in phase space. Using this expression and the Dicke model, which is an interacting spin-boson model with an unbounded four-dimensional phase space, we show that the Rényi occupations with $\alpha \gt 1$ are highly effective at revealing quantum scars. Furthermore, by analyzing the high moments ($\alpha \gt 1$) of the Husimi function, we are able to identify qualitatively and quantitatively the unstable periodic orbits that scar some of the eigenstates of the model.