Atmosphere (Oct 2021)

Generating Flood Hazard Maps Based on an Innovative Spatial Interpolation Methodology for Precipitation

  • Mohammad Zare,
  • Guy J.-P. Schumann,
  • Felix Norman Teferle,
  • Ruja Mansorian

DOI
https://doi.org/10.3390/atmos12101336
Journal volume & issue
Vol. 12, no. 10
p. 1336

Abstract

Read online

In this study, a new approach for rainfall spatial interpolation in the Luxembourgian case study is introduced. The method used here is based on a Fuzzy C-Means (FCM) clustering method. In a typical FCM procedure, there are a lot of available data and each data point belongs to a cluster, with a membership degree [0 1]. On the other hand, in our methodology, the center of clusters is determined first and then random data are generated around cluster centers. Therefore, this approach is called inverse FCM (i-FCM). In order to calibrate and validate the new spatial interpolation method, seven rain gauges in Luxembourg, Germany and France (three for calibration and four for validation) with more than 10 years of measured data were used and consequently, the rainfall for ungauged locations was estimated. The results show that the i-FCM method can be applied with acceptable accuracy in validation rain gauges with values for R2 and RMSE of (0.94–0.98) and (9–14 mm), respectively, on a monthly time scale and (0.86–0.89) and (1.67–2 mm) on a daily time scale. In the following, the maximum daily rainfall return periods (10, 25, 50 and 100 years) were calculated using a two-parameter Weibull distribution. Finally, the LISFLOOD FP flood model was used to generate flood hazard maps in Dudelange, Luxembourg with the aim to demonstrate a practical application of the estimated local rainfall return periods in an urban area.

Keywords