An Online Measurement Method for Insulator Creepage Distance on Transmission Lines
Jing Huang,
Kejian Liu,
Dan Zeng,
Zhijiang Zhang
Affiliations
Jing Huang
Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Joint International Research Laboratory of Specialty Fiber Optics and Advanced Communication, Shanghai Institute for Advanced Communication and Data Science, Shanghai University, 99 Shangda Road, Shanghai 200444, China
Kejian Liu
Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Joint International Research Laboratory of Specialty Fiber Optics and Advanced Communication, Shanghai Institute for Advanced Communication and Data Science, Shanghai University, 99 Shangda Road, Shanghai 200444, China
Dan Zeng
Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Joint International Research Laboratory of Specialty Fiber Optics and Advanced Communication, Shanghai Institute for Advanced Communication and Data Science, Shanghai University, 99 Shangda Road, Shanghai 200444, China
Zhijiang Zhang
Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Joint International Research Laboratory of Specialty Fiber Optics and Advanced Communication, Shanghai Institute for Advanced Communication and Data Science, Shanghai University, 99 Shangda Road, Shanghai 200444, China
Insulators play a crucial role in ensuring the normal operation of the power system, and the creepage distance is an important electrical parameter of insulators. Most available solutions focus mainly on offline measurement methods, and online measurement for insulator creepage distance on transmission lines remains a challenging task. To address this issue and to further improve the corresponding work efficiency, an online measurement method for insulator creepage distance is presented in this paper. Considering the glass material of the insulator and the long measuring distance, this method recognizes the insulator type indirectly by calculating the structural parameters of the insulators based on their geometric features, and then obtaining the creepage distance. Accordingly, a measurement system, which mainly includes an electronic total station and a camera with a telephoto lens, is designed in this paper. Moreover, this paper also proposes an error analysis model aimed at reducing the errors caused by the layout of this system. In the conducted experiments, this proposed method effectively obtains the creepage distance and the error correction model can further improve the measurement accuracy of structural parameters.