Diagnostics (Aug 2024)
Gray-Scale Extraction of Bone Features from Chest Radiographs Based on Deep Learning Technique for Personal Identification and Classification in Forensic Medicine
Abstract
Post-mortem (PM) imaging has potential for identifying individuals by comparing ante-mortem (AM) and PM images. Radiographic images of bones contain significant information for personal identification. However, PM images are affected by soft tissue decomposition; therefore, it is desirable to extract only images of bones that change little over time. This study evaluated the effectiveness of U-Net for bone image extraction from two-dimensional (2D) X-ray images. Two types of pseudo 2D X-ray images were created from the PM computed tomography (CT) volumetric data using ray-summation processing for training U-Net. One was a projection of all body tissues, and the other was a projection of only bones. The performance of the U-Net for bone extraction was evaluated using Intersection over Union, Dice coefficient, and the area under the receiver operating characteristic curve. Additionally, AM chest radiographs were used to evaluate its performance with real 2D images. Our results indicated that bones could be extracted visually and accurately from both AM and PM images using U-Net. The extracted bone images could provide useful information for personal identification in forensic pathology.
Keywords