Beilstein Journal of Nanotechnology (Jul 2017)

Light-induced magnetoresistance in solution-processed planar hybrid devices measured under ambient conditions

  • Sreetama Banerjee,
  • Daniel Bülz,
  • Danny Reuter,
  • Karla Hiller,
  • Dietrich R. T. Zahn,
  • Georgeta Salvan

DOI
https://doi.org/10.3762/bjnano.8.150
Journal volume & issue
Vol. 8, no. 1
pp. 1502 – 1507

Abstract

Read online

We report light-induced negative organic magnetoresistance (OMAR) measured in ambient atmosphere in solution-processed 6,13-bis(triisopropylsilylethynyl)pentacene (TIPS-pentacene) planar hybrid devices with two different device architectures. Hybrid electronic devices with trench-isolated electrodes (HED-TIE) having a channel length of ca. 100 nm fabricated in this work and, for comparison, commercially available pre-structured organic field-effect transistor (OFET) substrates with a channel length of 20 µm were used. The magnitude of the photocurrent as well as the magnetoresistance was found to be higher for the HED-TIE devices because of the much smaller channel length of these devices compared to the OFETs. We attribute the observed light-induced negative magnetoresistance in TIPS-pentacene to the presence of electron–hole pairs under illumination as the magnetoresistive effect scales with the photocurrent. The magnetoresistance effect was found to diminish over time under ambient conditions compared to a freshly prepared sample. We propose that the much faster degradation of the magnetoresistance effect as compared to the photocurrent was due to the incorporation of water molecules in the TIPS-pentacene film.

Keywords