Materials & Design (Oct 2022)

The design and additive manufacturing of an eco-friendly mold utilized for high productivity based on conformal cooling optimization

  • Woongbeom Heogh,
  • Si Mo Yeon,
  • Dong-Seok Kang,
  • Seonghwan Park,
  • Seongjun Park,
  • Kwanho Ryu,
  • Juhyun Sun,
  • Leecheol Ji,
  • Yong Son,
  • Kyunsuk Choi,
  • Cheol Woo Ha

Journal volume & issue
Vol. 222
p. 111088

Abstract

Read online

This study proposes an eco-friendly (ECO) mold that is fabricated using the laser powder bed fusion (LPBF) method, which utilizes a three-dimensional (3D) cooling channel. Unlike previous studies, we designed surface-type conformal cooling channels (CCC) based on the design concept for additive manufacturing, at a constant depth corresponding to the casting part. Pin fins were installed inside the surface-type cooling channels and aligned through numerical analysis to induce the turbulence of the coolant uniformly through the cooling channel while generating less thermal stress during solidification of the as-cast Al-Si alloy-based product, which increased the cooling efficiency of the proposed ECO mold. Moreover, the ECO mold was utilized to cast an automobile piston to demonstrate its feasibility at an industrial level. The results showed that, the casting process decreased significantly from 133 to 105 s per piston (21% reduction) compared to the conventional mold with a single columnar cooling channel. Additionally, the average grain size of the ECO mold decreased from 502 to 398 µm. The ultimate tensile strength and Rockwell hardness increased by 12.5% and 5.5%, respectively.

Keywords