PLoS ONE (Jan 2016)
Utilizing Estimated Creatinine Excretion to Improve the Performance of Spot Urine Samples for the Determination of Proteinuria in Kidney Transplant Recipients.
Abstract
Agreement between spot and 24-hour urine protein measurements is poor in kidney transplant recipients. We investigated whether using formulae to estimate creatinine excretion rate (eCER), rather than assuming a standard creatinine excretion rate, would improve the estimation of proteinuria from spot urine samples in kidney transplant recipients.We measured 24 hour urine protein and albumin and spot albumin:creatinine (ACR) and spot protein:creatinine (PCR) in 181 Kidney transplant recipients." We utilized 6 different published formulae (Fotheringham, CKD-EPI, Cockcroft-Gault, Walser, Goldwasser and Rule) to estimate eCER and from it calculated estimated albumin and protein excretion rate (eAER and ePER). Bias, precision and accuracy (within 15%, 30% and 50%) of ACR, PCR, eAER, ePER were compared to 24-hour urine protein and albumin.ACR and PCR significantly underestimated 24-hour albumin and protein excretion (ACR Bias (IQR), -5.9 mg/day; p< 0.01; PCR Bias, (IQR), -35.2 mg/day; p<0.01). None of the formulae used to calculate eAER or ePER had a bias that was significantly different from the 24-hour collection (eAER and ePER bias: Fotheringham -0.3 and 7.2, CKD-EPI 0.3 and 13.5, Cockcroft-Gault -3.2 and -13.9, Walser -1.7 and 3.1, Goldwasser -1.3 and -0.5, Rule -0.6 and 4.2 mg/day respectively. The accuracy for ACR and PCR were lower (within 30% being 38% and 43% respectively) than the corresponding values estimated by utilizing eCER (for eAER 46% to 49% and ePER 46-54%).Utilizing estimated creatinine excretion to calculate eAER and ePER improves the estimation of 24-hour albuminuria/proteinuria with spot urine samples in kidney transplant recipients.