mBio (Mar 2011)

Functional Reorganization of Promyelocytic Leukemia Nuclear Bodies during BK Virus Infection

  • Mengxi Jiang,
  • Pouya Entezami,
  • Monica Gamez,
  • Thomas Stamminger,
  • Michael J. Imperiale

DOI
https://doi.org/10.1128/mBio.00281-10
Journal volume & issue
Vol. 2, no. 1

Abstract

Read online

ABSTRACT BK virus (BKV) is the causative agent for polyomavirus-associated nephropathy, a severe disease found in renal transplant patients due to reactivation of a persistent BKV infection. BKV replication relies on the interactions of BKV with many nuclear components, and subnuclear structures such as promyelocytic leukemia nuclear bodies (PML-NBs) are known to play regulatory roles during a number of DNA virus infections. In this study, we investigated the relationship between PML-NBs and BKV during infection of primary human renal proximal tubule epithelial (RPTE) cells. While the levels of the major PML-NB protein components remained unchanged, BKV infection of RPTE cells resulted in dramatic alterations in both the number and the size of PML-NBs. Furthermore, two normally constitutive components of PML-NBs, Sp100 and hDaxx, became dispersed from PML-NBs. To define the viral factors responsible for this reorganization, we examined the cellular localization of the BKV large tumor antigen (TAg) and viral DNA. TAg colocalized with PML-NBs during early infection, while a number of BKV chromosomes were adjacent to PML-NBs during late infection. We demonstrated that TAg alone was not sufficient to reorganize PML-NBs and that active viral DNA replication is required. Knockdown of PML protein did not dramatically affect BKV growth in culture. BKV infection, however, was able to rescue the growth of an ICP0-null herpes simplex virus 1 mutant whose growth defect was partially due to its inability to disrupt PML-NBs. We hypothesize that the antiviral functions of PML-NBs are inactivated through reorganization during normal BKV infection. IMPORTANCE BK virus (BKV) is a human pathogen that causes severe diseases, including polyomavirus-associated nephropathy in kidney transplant patients and hemorrhagic cystitis in bone marrow transplant recipients. How BKV replication is regulated and the effects of a lytic BKV infection on host cells at the molecular level are not well understood. Currently, there is no specific antiviral treatment for BKV-associated disease, and a better understanding of the complete life cycle of the virus is necessary. Here, we report the interplay between BKV and one of the regulatory structures in the host cell nucleus, promyelocytic leukemia nuclear bodies (PML-NBs). Our results show that BKV infection reorganizes PML-NBs as a strategy to inactivate the negative functions of PML-NBs.