Applied Nano (Aug 2024)
Nano-Encapsulation and Conjugation Applied in the Development of Lipid Nanoparticles Delivering Nucleic Acid Materials to Enable Gene Therapies
Abstract
Nano-encapsulation and conjugation are the main strategies employed for drug delivery. Nanoparticles help improve encapsulation and targeting efficiency, thus optimizing therapeutic efficacy. Through nanoparticle technology, replacement of a defective gene or delivery of a new gene into a patient’s genome has become possible. Lipid nanoparticles (LNPs) loaded with genetic materials are designed to be delivered to specific target sites to enable gene therapy. The lipid shells protect the fragile genetic materials from degradation, then successfully release the payload inside of the cells, where it can integrate into the patient’s genome and subsequently express the protein of interest. This review focuses on the development of LNPs and nano-pharmaceutical techniques for improving the potency of gene therapies, reducing toxicities, targeting specific cells, and releasing genetic materials to achieve therapeutic effects. In addition, we discuss preparation techniques, encapsulation efficiency, and the effects of conjugation on the efficacy of LNPs in delivering nucleic acid materials.
Keywords