Applied Sciences (Oct 2015)

Phonon Spectrum Engineering in Rolled-up Micro- and Nano-Architectures

  • Vladimir M. Fomin,
  • Alexander A. Balandin

DOI
https://doi.org/10.3390/app5040728
Journal volume & issue
Vol. 5, no. 4
pp. 728 – 746

Abstract

Read online

We report on a possibility of efficient engineering of the acoustic phonon energy spectrum in multishell tubular structures produced by a novel high-tech method of self-organization of micro- and nano-architectures. The strain-driven roll-up procedure paved the way for novel classes of metamaterials such as single semiconductor radial micro- and nano-crystals and multi-layer spiral micro- and nano-superlattices. The acoustic phonon dispersion is determined by solving the equations of elastodynamics for InAs and GaAs material systems. It is shown that the number of shells is an important control parameter of the phonon dispersion together with the structure dimensions and acoustic impedance mismatch between the superlattice layers. The obtained results suggest that rolled up nano-architectures are promising for thermoelectric applications owing to a possibility of significant reduction of the thermal conductivity without degradation of the electronic transport.

Keywords