Ain Shams Engineering Journal (Sep 2024)

Numerical investigation of heat and mass transfer study on MHD rotatory hybrid nanofluid flow over a stretching sheet with gyrotactic microorganisms

  • Humaira Yasmin

Journal volume & issue
Vol. 15, no. 9
p. 102918

Abstract

Read online

This study signifies the advancing reader’s understanding of complex fluid dynamics, offering insights crucial for optimizing heat transfer processes, environmental engineering applications, and biomedical technologies. The focus of this work is to examine the heat and mass transference properties of electrically conductive hybrid nanofluid flow on a bi-directional stretching surface with gyrotactic microorganisms. The effects of thermophoresis, thermal radiation, Brownian motion, heat source, and chemical reaction are incorporated into the problem. The sheet is rotated about the z-axis with ω as its velocity. The modeled equations are changed to dimensionless form with the use of similarity variables and are then solved by employing the homotopy analysis method (HAM). It is concluded that the larger rotation factor boosts the velocity plot. Similarly, the thermal radiation and thermophoretic factor heighten the thermal gradient of the hybrid nanofluid. From the computed data, it is revealed that the microorganism plot shows a declining behavior against the Peclet and Lewis numbers. The findings of this work help in the optimization of cooling systems in electronics, power plants, and automotive engines by enhancing heat transfer efficiency. Moreover, in biomedical engineering, understanding microorganism behavior in fluid flow is critical for developing advanced drug delivery systems and biomedical diagnostics.

Keywords