Remote Sensing (Feb 2023)

Analysis of the Difference between Climate Aridity Index and Meteorological Drought Index in the Summer Monsoon Transition Zone

  • Hongli Zhang,
  • Liang Zhang,
  • Qiang Zhang,
  • Qian Liu,
  • Xiaoni You,
  • Lixia Wang

DOI
https://doi.org/10.3390/rs15051175
Journal volume & issue
Vol. 15, no. 5
p. 1175

Abstract

Read online

The summer monsoon transition zone (SMTZ) in China represents an unusual land type with an agro-pasture ecotone, and it is a climate-sensitive region. Changes in climate aridity and changes in meteorological drought are mutually related yet fundamentally different. In this study, potential evapotranspiration (ETO) is calculated using Penman–Monteith, based on China’s national meteorological stations data from 1961 to 2013. An ETO-based climate aridity index (IAI) and ETO-based standardized precipitation evapotranspiration index (SPEI) are used as the metrics for climate aridity and meteorological drought, respectively. The result shows a significant difference between climate aridity and meteorological drought in the SMTZ, compared with the monsoon and non-monsoon zone. This difference varies on different time scales (1–48 months), and the greatest differences between IAI and SPEI are on seasonal and monthly scales (1–12 months), but lower at longer time scales (>12 months). The first reason for the difference is the desynchronicity of meteorological drought and the background climate. After the background climate becomes a relatively arid state (such as 0.96 AI AI AI fluctuations eventually results in increasingly severe meteorological droughts, or the recurrence of equally severe droughts with drastic reduction. Consequently, the onset of the most severe climate aridity is two to seven months (mostly three to four months) ahead of the onset of the most severe drought events, until the climate returns to a semi-arid state. Second, climate aridity represents the average state of the background climate over a long time period and changes gently, while meteorological droughts are stochastic climate events and change drastically. These findings indicate that IAI can serve as a predictor of the onset of meteorological drought events, especially in the SMTZ, but it fails to characterize the progression of meteorological drought events well. Therefore, this result is of great significance for drought prediction and early warning.

Keywords