Inorganics (Aug 2023)

Efficient Disposal of Rhodamine 6G and Acid Orange 10 Dyes from Aqueous Media Using ZrO<sub>2</sub>/CdMn<sub>2</sub>O<sub>4</sub>/CdO as Novel and Facilely Synthesized Nanocomposites

  • Ehab A. Abdelrahman,
  • Faisal K. Algethami,
  • Huda S. AlSalem,
  • Mona S. Binkadem,
  • Mohamed Khairy,
  • Fawaz A. Saad,
  • Gharieb S. El-Sayyad,
  • Zahrah Alqahtani

DOI
https://doi.org/10.3390/inorganics11080333
Journal volume & issue
Vol. 11, no. 8
p. 333

Abstract

Read online

It is essential to remove rhodamine 6G and acid orange 10 dyes from contaminated water because they can induce cancer and irritate the lungs, skin, mucous, membranes, and eyes. Hence, in the current work, the Pechini sol–gel method was used for the facile synthesis of ZrO2/CdMn2O4/CdO as novel nanocomposites at 600 and 800 °C. The synthesized nanocomposites were used as novel adsorbents for the efficient removal of rhodamine 6G and acid orange 10 dyes from aqueous media. The nanocomposites, which were synthesized at 600 and 800 °C, were abbreviated as EK600 and EK800, respectively. The synthesized nanocomposites were characterized by EDS, XRD, N2 adsorption/desorption analyzer, and FE-SEM. The patterns of XRD showed that the average crystal size of the EK600 and EK800 nanocomposites is 68.25 and 85.32 nm, respectively. Additionally, the images of FE-SEM showed that the surface of the EK600 nanocomposite consists of spherical, polyhedral, and rod shapes with an average grain size of 99.36 nm. Additionally, the surface of the EK800 nanocomposite consists of polyhedral and spherical shapes with an average grain size of 143.23 nm. In addition, the BET surface area of the EK600 and EK800 nanocomposites is 46.33 and 38.49 m2/g, respectively. The optimal conditions to achieve the highest removal of rhodamine 6G and acid orange 10 dyes are pH = 8, contact time = 24 min, and temperature = 298 kelvin. The greatest removal capacity of the EK600 and EK800 adsorbents towards rhodamine 6G dye is 311.53 and 250.63 mg/g, respectively. Additionally, the greatest removal capacity of the EK600 and EK800 adsorbents towards acid orange 10 dye is 335.57 and 270.27 mg/g, respectively. The removal of rhodamine 6G and acid orange 10 dyes using the EK600 and EK800 adsorbents is spontaneous, exothermic, follows the Langmuir adsorption isotherm, and fits well with the pseudo-first-order kinetic model.

Keywords