Journal of Neuroinflammation (Apr 2022)

Single-cell transcriptomics of the ventral posterolateral nucleus-enriched thalamic regions from HSV-1-infected mice reveal a novel microglia/microglia-like transcriptional response

  • Olus Uyar,
  • Juan Manuel Dominguez,
  • Maude Bordeleau,
  • Lina Lapeyre,
  • Fernando González Ibáñez,
  • Luc Vallières,
  • Marie-Eve Tremblay,
  • Jacques Corbeil,
  • Guy Boivin

DOI
https://doi.org/10.1186/s12974-022-02437-7
Journal volume & issue
Vol. 19, no. 1
pp. 1 – 24

Abstract

Read online

Abstract Background Microglia participate in the immune response upon central nervous system (CNS) infections. However, the role of these cells during herpes simplex encephalitis (HSE) has not been fully characterized. We sought to identify different microglia/microglia-like cells and describe the potential mechanisms and signaling pathways involved during HSE. Methods The transcriptional response of CD11b+ immune cells, including microglia/microglia-like cells, was investigated using single-cell RNA sequencing (scRNA-seq) on cells isolated from the ventral posterolateral nucleus (VPL)-enriched thalamic regions of C57BL/6 N mice intranasally infected with herpes simplex virus-1 (HSV-1) (6 × 105 PFUs/20 µl). We further performed scanning electronic microscopy (SEM) analysis in VPL regions on day 6 post-infection (p.i.) to provide insight into microglial functions. Results We describe a novel microglia-like transcriptional response associated with a rare cell population (7% of all analyzed cells), named “in transition” microglia/microglia-like cells in HSE. This new microglia-like transcriptional signature, found in the highly infected thalamic regions, was enriched in specific genes (Retnlg, Cxcr2, Il1f9) usually associated with neutrophils. Pathway analysis of this cell-type transcriptome showed increased NLRP3-inflammasome-mediated interleukin IL-1β production, promoting a pro-inflammatory response. These cells' increased expression of viral transcripts suggests that the distinct “in transition” transcriptome corresponds to the intrinsic antiviral immune signaling of HSV-1-infected microglia/microglia-like cells in the thalamus. In accordance with this phenotype, we observed several TMEM119+/IBA-I+ microglia/microglia-like cells immunostained for HSV-1 in highly infected regions. Conclusions A new microglia/microglia-like state may potentially shed light on how microglia could react to HSV-1 infection. Our observations suggest that infected microglia/microglia-like cells contribute to an exacerbated CNS inflammation. Further characterization of this transitory state of the microglia/microglia-like cell transcriptome may allow the development of novel immunomodulatory approaches to improve HSE outcomes by regulating the microglial immune response.

Keywords