Physics and Imaging in Radiation Oncology (Apr 2022)

Harmonisation of scanner-dependent contrast variations in magnetic resonance imaging for radiation oncology, using style-blind auto-encoders

  • Kavi Fatania,
  • Anna Clark,
  • Russell Frood,
  • Andrew Scarsbrook,
  • Bashar Al-Qaisieh,
  • Stuart Currie,
  • Michael Nix

Journal volume & issue
Vol. 22
pp. 115 – 122

Abstract

Read online

Background and purpose: Magnetic Resonance Imaging (MRI) exhibits scanner dependent contrast, which limits generalisability of radiomics and machine-learning for radiation oncology. Current deep-learning harmonisation requires paired data, retraining for new scanners and often suffers from geometry-shift which alters anatomical information. The aim of this study was to investigate style-blind auto-encoders for MRI harmonisation to accommodate unpaired training data, avoid geometry-shift and harmonise data from previously unseen scanners. Materials and methods: A style-blind auto-encoder, using adversarial classification on the latent-space, was designed for MRI harmonisation. The public CC359 T1-w MRI brain dataset includes six scanners (three manufacturers, two field strengths), of which five were used for training. MRI from all six (including one unseen) scanner were harmonised to common contrast. Harmonisation extent was quantified via Kolmogorov-Smirnov testing of residual scanner dependence of 3D radiomic features, and compared to WhiteStripe normalisation. Anatomical content preservation was measured through change in structural similarity index on contrast-cycling (δSSIM). Results: The percentage of radiomics features showing statistically significant scanner-dependence was reduced from 41% (WhiteStripe) to 16% for white matter and from 39% to 27% for grey matter. δSSIM < 0.0025 on harmonisation and de-harmonisation indicated excellent anatomical content preservation. Conclusions: Our method harmonised MRI contrast effectively, preserved critical anatomical details at high fidelity, trained on unpaired data and allowed zero-shot harmonisation. Robust and clinically translatable harmonisation of MRI will enable generalisable radiomic and deep-learning models for a range of applications, including radiation oncology treatment stratification, planning and response monitoring.

Keywords