Journal of High Energy Physics (Mar 2021)

Non-standard interactions in SMEFT confronted with terrestrial neutrino experiments

  • Yong Du,
  • Hao-Lin Li,
  • Jian Tang,
  • Sampsa Vihonen,
  • Jiang-Hao Yu

DOI
https://doi.org/10.1007/JHEP03(2021)019
Journal volume & issue
Vol. 2021, no. 3
pp. 1 – 45

Abstract

Read online

Abstract The Standard Model Effective Field Theory (SMEFT) provides a systematic and model-independent framework to study neutrino non-standard interactions (NSIs). We study the constraining power of the on-going neutrino oscillation experiments T2K, NOνA, Daya Bay, Double Chooz and RENO in the SMEFT framework. A full consideration of matching is provided between different effective field theories and the renormalization group running at different scales, filling the gap between the low-energy neutrino oscillation experiments and SMEFT at the UV scale. We first illustrate our method with a top- down approach in a simplified scalar leptoquark model, showing more stringent constraints from the neutrino oscillation experiments compared to collider studies. We then provide a bottom-up study on individual dimension-6 SMEFT operators and find NSIs in neutrino experiments already sensitive to new physics at ∼20 TeV when the Wilson coefficients are fixed at unity. We also investigate the correlation among multiple operators at the UV scale and find it could change the constraints on SMEFT operators by several orders of magnitude compared with when only one operator is considered. Furthermore, we find that accelerator and reactor neutrino experiments are sensitive to different SMEFT operators, which highlights the complementarity of the two experiment types.

Keywords