Scientific Reports (Dec 2021)
Environmental contaminants and the disproportionate prevalence of type-2 diabetes mellitus among Indigenous Cree women in James Bay Quebec, Canada
Abstract
Abstract Indigenous populations are disproportionately affected by type 2 diabetes (T2DM) compared to non-Indigenous people. Of importance, the prevalence of T2DM is greater amongst females than males in First Nations communities, in contrast to higher male prevalence reported in non-Indigenous Canadians. Therefore, in this study we extend our previously published work with respect to females, and the potential association between environmental exposures to organochlorine pesticides, such as dichlorodiphenyltrichloroethane (DDT), and dichlorodiphenyldichloroethylene (DDE) to explain the greater prevalence of T2DM among Indigenous females compared to males. Using data from the Multi-Community Environment-and-Health Study, Principal Component Analysis (PCA), examined 9-polychlorinated biphenyl congeners, 7-organic pesticides, and 4-metal/metalloids. Modified Poisson regression with robust error variance estimated adjusted prevalence ratios (PR) and corresponding 95% confidence intervals (95% CI), regressing prevalent T2DM on the newly derived principal components (PC), adjusting for a priori covariates, including parity. We further examined the relationship between high detection concentrations of DDT and tertials of categorized DDE exposures on T2DM among Indigenous Cree women. Among 419 female participants, 23% (n = 95) had physician-diagnosed T2DM. PCA analysis show that DDT and Lead (Pb) loaded highly on the second axis (PC-2), although in opposite directions, indicating the different exposure sources. As previously published, T2DM was significantly associated with PC-2 across adjusted models, however, after further adjusting for parity in this analysis, T2DM was no longer significantly associated with increasing PC-2 scores (PR = 0.88, 95% 0.76, 1.03). Furthermore, we found that the highest detectable levels of DDT, and tertiles of DDE were significantly associated with prevalent T2DM in the fully adjusted model (PR = 1.93, 1.17, 3.19), and (PR = 3.58, 1.10, 11.70), respectively. This cross-sectional analysis suggests organochlorines, specifically, detectable high exposure concentrations of DDT and DDE are associated with prevalent type 2 diabetes, signifying a possible important link between parity and environmental organochlorines pesticides among Indigenous Cree women.