Foods (Jul 2024)

Scenario Analysis of Food Phosphorus Footprint in Kisumu, a Lakeside East African City in Lake Victoria (Kenya)

  • Zheng Guo,
  • Sophia Shuang Chen,
  • Giri Raj Kattel,
  • Wenyi Qiao,
  • Linglong Lu,
  • Rong Li,
  • Anna Charles Mkumbo

DOI
https://doi.org/10.3390/foods13142225
Journal volume & issue
Vol. 13, no. 14
p. 2225

Abstract

Read online

Increased food production and consumption patterns have resulted in higher urban food phosphorus footprints, leading to a series of resource and environmental problems worldwide. We quantified the food phosphorus footprint of the African city of Kisumu using substance flow analysis. Our aim was to develop Kisumu’s sustainable phosphorus management framework so that the city would reduce phosphorus losses into the food system. Our results show that in the year 2023, the import and export of food phosphorus in the Kisumu food system was 2730.26 ± 2.7% t P yr−1 and 3297.05 ± 2.4% t P yr−1, respectively. There was −566.79 ± −18% t P yr−1 food phosphorus deficit in the Kisumu food system. Crop planting subsystem runoff/leaching/erosion loss, household consumption subsystem waste loss, and pit latrine subsystem blackwater loss are the major pathways of phosphorus losses into the environment and the main contributors to the food phosphorus footprint in the city. The 2030 scenario analysis shows that implementing a comprehensive scenario scheme throughout the entire lifecycle process from phosphorus input to waste disposal is the best choice for reducing phosphorus losses and suppressing the growth of food phosphorus footprint in the future. Our study shows that the food phosphorus footprint in the Kisumu food system was 0.67 kg P cap−1yr−1 in 2023, which is still at a low level but may enter a continuous upward trend with the improvement of socio-economic development of the city. In our framework, we have proposed a few essential measures that include urine separation, installation of septic tank, adjustment of dietary structure, flexible layout of sanitary disposal facilities, and separation of organic waste streams to reduce food phosphorus footprints in Kisumu. Given the similarity of cities along the shores of Lake Victoria, our calculation methods and management strategies can be applied to other cities in the region.

Keywords