Water (Oct 2020)

Open-Surface Water Bodies Dynamics Analysis in the Tarim River Basin (North-Western China), Based on Google Earth Engine Cloud Platform

  • Jiahao Chen,
  • Tingting Kang,
  • Shuai Yang,
  • Jingyi Bu,
  • Kexin Cao,
  • Yanchun Gao

DOI
https://doi.org/10.3390/w12102822
Journal volume & issue
Vol. 12, no. 10
p. 2822

Abstract

Read online

The Tarim River Basin (TRB), located in an arid region, is facing the challenge of increasing water pressure and uncertain impacts of climate change. Many water body identification methods have achieved good results in different application scenarios, but only a few for arid areas. An arid region water detection rule (ARWDR) was proposed by combining vegetation index and water index. Taking computing advantages of the Google Earth Engine (GEE) cloud platform, 56,284 Landsat 5/7/8 optical images in the TRB were used to detect open-surface water bodies and generated a 30-m annual water frequency map from 1992 to 2019. The interannual changes and trends of the water body area were analyzed and the impacts of climatic and anthropogenic drivers on open-surface water body area dynamics were examined. The results show that: (1) ARWDR is suitable for long-term and large-scale water body identification, especially suitable for arid areas lacking vegetation. (2) The permanent water area was 2093.63 km2 and the seasonal water area was 44,242.80 km2, accounting for 4.52% and 95.48% of the total open-surface water area of he TRB, respectively. (3) From 1992 to 2019, the permanent and seasonal water bodies of the TRB all showed an increasing trend, with obvious spatial heterogeneity. (4) Among the effects of human activities and climate change, precipitation has the largest impact on the water area, which can explain 65.3% of the change of water body area. Our findings provide valuable information for the entire TRB’s open-surface water resources planning and management.

Keywords